翻訳と辞書
Words near each other
・ Woroblin
・ Worodougou
・ Worofla
・ Worondi Rivulet
・ Worongary, Queensland
・ Woroni
・ Woroniany
・ Woronicze
・ Woronie
・ Woroniec, Biała Podlaska County
・ Woroniec, Radzyń Podlaski County
・ Woronin
・ Woronin body
・ Woronkofski Island
・ Woronoff's ring
Worm-like chain
・ Wormald
・ Wormald Ice Piedmont
・ Wormald International
・ Worman
・ Wormatia Worms
・ Wormatia-Stadion
・ WormBase
・ WormBook
・ Wormbridge
・ Wormed
・ Wormed by Leonard
・ Wormegay
・ Wormegay Castle
・ Wormegay Priory


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Worm-like chain : ウィキペディア英語版
Worm-like chain
The worm-like chain (WLC) model in polymer physics is used to describe the behavior of semi-flexible polymers; it is the continuous version of the Kratky-Porod model.
== Theoretical Considerations ==
The WLC model envisions an isotropic rod that is continuously flexible. This is in contrast to the freely-jointed chain model that is flexible only between discrete segments. The worm-like chain model is particularly suited for describing stiffer polymers, with successive segments displaying a sort of cooperativity: all pointing in roughly the same direction. At room temperature, the polymer adopts a conformational ensemble that is smoothly curved; at T = 0 K, the polymer adopts a rigid rod conformation.〔
For a polymer of length l, parametrize the path of the polymer as s \in(0,l), allow \hat t(s) to be the unit tangent vector to the chain at s, and \vec r(s) to be the position vector along the chain. Then
:\hat t(s) \equiv \frac and the end-to-end distance \vec R = \int_^\hat t(s) ds .〔
It can be shown that the orientation correlation function for a worm-like chain follows an exponential decay:〔〔
:\langle\hat t(s) \cdot \hat t(0)\rangle=\langle \cos \; \theta (s)\rangle = e^\,,
where P is by definition the polymer's characteristic persistence length. A useful value is the mean square end-to-end distance of the polymer:〔〔

\langle R^ \rangle = \langle \vec R \cdot \vec R \rangle
= \left\langle \int_^ \hat t(s) ds \cdot \int_^ \hat t(s') ds' \right\rangle = \int_^ ds \int_^ \langle \hat t(s) \cdot \hat t(s') \rangle ds'= \int_^ ds \int_^ e^ ds'


\langle R^ \rangle
= 2 Pl \left (1 - \frac \left ( 1 - e^ \right ) \right )
,
* Note that in the limit of l \gg P, then \langle R^ \rangle = 2Pl. This can be used to show that a Kuhn segment is equal to twice the persistence length of a worm-like chain.〔

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Worm-like chain」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.